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Abstract

Developing new drugs remains prohibitively expensive, time-
consuming, and often involves safety issues. Accurate pre-
diction of drug-target interactions (DTIs) can guide the drug
discovery process and thus facilitate drug development. Non-
Euclidian data such as drug-like molecule structures, key
pocket residue structures, and protein interaction networks can
be represented effectively using graphs. Therefore, the
emerging graph neural network has been rapidly applied to
predict DTIs, and proved effective in finding repositioning drugs
and accelerating drug discovery. In this review, we provide a
brief overview of deep neural networks used in DTI models.
Then, we summarize the database required for DTI prediction,
followed by a comprehensive introduction of applications of
graph neural networks for DTI prediction. We also highlight
current challenges and future directions to guide the further
development of this field.
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Introduction
Most drugs achieve therapeutic effects through in vivo
interactions with specific target molecules such as en-
zymes, nuclear receptors, G-protein coupled receptors
www.sciencedirect.com
(GPCRs), and ion channels [1]. Therefore, the identi-

fication of drug-target interactions (DTIs) is an impor-
tant area in the drug discovery pipeline, including lead
generation and optimization, drug repositioning, poly-
pharmacology, virtual screening and other related fields
[2]. As traditional pharmacology assays for DTIs iden-
tification are costly and time-consuming [3], there is
high demand for accurate computational determination
of DTIs in order to effectively complement experi-
mental wet-lab techniques by narrowing the search
space for subsequent wet experiments and thus accel-
erating drug development [4].

Machine learning methods have long served as impor-
tant tools in drug discovery [5]. Traditional machine
learning methods such as Support Vector Machine
(SVM), Random Forest (RF), Naive Bayes (NB),
K-Nearest Neighbour (KNN), and artificial neural net-
works (ANNs) are widely used in quantitative structure
activity relationship (QSAR), proteochemometric
(PCM) approach, and molecular docking to model
DTI [6].

DTI models based on traditional machine learning
methods can take advantage of high-dimensional com-
plex data, which is usually constructed using predefined
chemical and protein descriptors and fingerprints. Deep
learning approaches, including the deep neural network
(DNN) and its variants, are capable of learning data
representation directly without using predefined de-
scriptors and thereby have shown promising potential in
DTI predictions. DTI models build on convolutional
neural networks (CNNs) and recurrent neural networks
(RNNs) can automatically extract features from texts

(protein sequences and SMILES) and images (3D
grids) [7,8]. However, all these features are Euclidean
data. In fact, chemical molecules graph [9] and protein
structures [10] can be processed into non-Euclidean
form and used as inputs of graph neural networks
(GNNs), as well as other data associated with DTIs
such as proteineprotein interaction networks [11] and
knowledge graphs [12]. The GNN has recently become
a widely used deep learning architecture because of its
impressive performance and high interpretability [13].
Its applications on DTI prediction have achieved some
Current Opinion in Structural Biology 2022, 73:102327
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2 Artificial Intelligence (AI) Methodologies in Structural Biology
measure of success. This review provides a brief over-
view of neural networks used in DTI models, and then
summarizes the advances of the investigations that have
applied GNNs on DTI prediction. Finally, we discuss
the challenge and developmental trend of the applica-
bility of deep learning algorithms in the field of
DTI prediction.

Brief introduction of neural networks
In the past few years, deep learning has achieved
phenomenal success in solving many challenging tasks,
such as data mining and classification, and thus aroused
considerable interest across various disciplines [14e16].
Newly emerging neural network approaches have shown
superior performance in recognizing, processing and
extrapolating complex patterns in molecular data than
traditional machine learning techniques [8,17].

Derived from the artificial neural network (ANN),
CNN, RNN and GNN are three of the most widely used
deep learning algorithms. Although they are generally
comprised of an input, an output layer, and zero or more
hidden layers, their application scope is different
because of their different input data forms. CNNs and
RNNs are efficient in extracting the features of
Euclidean data such as images (2D grids) and texts (1D
sequences). Euclidean data could be sampled on a grid
and sensibly modelled as being plotted in n-dimensional

linear space [18]. They could be considered special
cases of graphs whose nodes are arranged regularly. This
kind of data has translation invariance and local con-
nectivity. Take the image as an example, by regarding
pixels as nodes, every node has the same number of
neighbor nodes. The position of nodes can be described
in Cartesian coordinates, and the Euclidean distance
between two nodes in the mapping space can represent
the distance in the real world. Therefore, the same
structural information in the image can be extracted in a
same way by defining a globally shared convolution

kernel (Figure 1 (a)). On the other hand, non-Euclidean
data has irregular shapes and sizes, whose nodes do not
have a spatial order and thus do not have properties of
translation invariance, local connectivity or a common
system of coordinates. Consequently, it is hard to define
a localized convolutional kernel to extract non-
Euclidean data such as structural information of
targeteligand complex and PPI network (Figure 1 (b)).
GNNs take these types of data as graphs, namely sets of
objects (nodes) and their relationships (edges), to learn
low-dimensional node embedding or graph representa-

tion. These embeddings are then employed to solve
many graph analysis tasks, such as node classification,
graph classification, and link prediction.

More specifically, the hidden layer of CNN [19] includes
three major building blocks: convolution layer, pooling
layer, and full connection layer. The function of the
convolution layer is tantamount to extracting features
Current Opinion in Structural Biology 2022, 73:102327
from the input data (Figure 1 (c)). Features extracted by
a convolution operation are often local, and thus multi-
layer convolution is needed to extract global features.
After feature extraction at the convolution layer, the
output feature map will be transferred to the pooling
layer for feature selection and information filtering.

Although general CNN can model 1D sequences, it is

difficult for CNN to complete such tasks if the
sequence length is variable. For example, in the trans-
lation task, the number of words in inputs and outputs is
variable. As a sequence can be broken down into a
number of unit tokens, RNNs treat each sequence
token as an individual input/output by using their in-
ternal state (memory) [20]. Besides, as the unit tokens
in the same sentence are not independent of each other,
RNNs differ from CNNs because their hidden layers
can receive the hidden state of the previous moment,
which can be thought of as the memory of previous in-

stances (Figure 1 (d)).

The graph neural network (GNN) has recently become
a widely used deep learning architecture because of its
impressive performance and high interpretability [13].
GNNs process non-Euclidean data as graphs, aiming to
transform data into a low-dimensional and more
discriminative feature space on the premise of main-
taining some geometric characteristics of the current
space through representation learning, namely graph
embedding. DeepWalk [21] is the most representative

method. It samples nodes in the graph by random walk,
and then learns the vector representation of nodes by
using a method similar to word2vec [22]. Four key ideas
behind CNN inspired the proposal of GNN: local
connection, shared weight, pooling, and the use of
multiple layers [23]. Graphs are typical locally connec-
ted structures; shared weights reduce the computa-
tional cost; pooling layers can merge semantically similar
features; multi-layer structure captures features of
various sizes. According to different calculation
methods, GNNs can be divided into spectral graph
convolution and spatial graph convolution. The spectral

domain graph convolutional networks (GCN) [24]
transforms graph signal from the spatial domain to the
spectral domain with Fourier basis and then defines
graph convolution operation in the spectral domain. For
the spatial domain, a representative example is
GraphSAGE [14], which targets a learning aggregator
whose job is to complete information aggregation of
neighboring nodes. Furthermore, by combining some
techniques, some variants of the GNN have demon-
strated ground-breaking performances in many deep
learning tasks. GAT [25], for instance, is produced by

combining GNN and the self-attention mechanism.

Conventional neural networks such as CNNs and RNNs
stack the features of nodes in a specific order and traverse
all possible sequences to characterize a graph completely,
www.sciencedirect.com
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GNN for DTIs prediction Zhang et al. 3
which increases computational cost [13]. GNNs, how-
ever, are capable to circumvent this defect because the
feature aggregation and propagation on each node does
not depend on its order or the number of its neighbor-
hood nodes (Figure 1 (e)), making it suitable for non-
Euclidean graphs. For example, by regarding atoms as
nodes and bonds as edges, chemical structural formulae
are typical non-Euclidean graphs whose nodes are not

naturally ordered. On the other hand, molecule struc-
tures can be transformed into unique text sequences,
namely SMILES (SimplifiedMolecular Input Line Entry
System) [26]. But the text sequence implicitly specifies
the order of the atoms that may interfere with the model.
On the basis of DeepDTA [17], GraphDTA [27] changed
Figure 1

Euclidean data, non-Euclidean data and comparison of neural networks. (a) E
chemical structure and interaction network; (c) The calculation method of CN
gation of GNN. The information of the neighbor node is propagated to node A

www.sciencedirect.com
part of the CNN layer to the GNN layer without
changing the structure of other parts of the model. On
the same dataset, the performance of GraphDTA has
improved to some extent. Hence, compared with CNN,
GNN may be more suitable for extracting information
from chemical structures. More details about the GNN
algorithm could be gained in the review [13].

Databases
Getting enough high-quality data is a prerequisite for an
accurate and efficient AI model. Driven by the technical
advancement of high-throughput screening (HTS) [28]
and parallel chemical synthesis [29], high-quality data-
sets of millions of molecules and their profile against a
uclidean data, including image and text; (b) Non-Euclidean data, including
Ns’ convolutional layer; (d) The structure of RNN; (e) Information aggre-
through two information aggregations.
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4 Artificial Intelligence (AI) Methodologies in Structural Biology
multitude of biological targets are growing rapidly,
making it possible to build in silico DTI models. In this
section, we provide a summary of databases related to
the DTI model in Table 1.

These databases can be divided into three categories:
interaction databases, protein structure databases, and
benchmark databases. Interaction databases are the

broadest and include molecular property and activity
(ChEMBL [35], PubChem [42], CTD [49]), clinical
information (DrugBank [30], DrugCentral [40]),
genomic information (KEGG [51], DisGeNET [44]),
compoundeprotein interactions (Matador [34],
PDBbind [37]), proteineprotein interactions (HuRI
[53], HPRD [46]) and drugegene interaction (DGIdb
[43]). We can use the information in the interaction
databases to construct interaction networks. The
structure data of the compound can also be found in the
interaction databases, such as PubChem [42].

Protein structure databases mainly include protein se-
quences and 3D structure information. Benchmark
database can be used to construct external test set s to
evaluate the performance of the model. DUD-E [56]
can establish the data of decoy compounds to verify the
effect of the model. On the basis of PubChem bioac-
tivity data, MUV [57] was established as an unbiased
baseline dataset for virtual screening. The repoDB [58]
database contains data on the success and failure of drug
repositioning experiments. More detailed descriptions

and comparisons of these databases can be found in
Refs. [59,60].
Graph neural network in drug-target
interactions

Structure-based predictions
With advances in theory and computational methods,
molecular dynamics and quantum mechanics have been
able to produce reliable results for structure-based pre-
diction of ligand-protein binding affinity [61]. However,
the huge computational cost limits their use in high-
throughput screening. On the other hand, molecular
docking methods including DOCK, AutoDock, GOLD,
etc., have been used to predict binding affinity. Although
these methods speed up computation through principled
parameter fitting, their computational accuracy is not
satisfactory. Therefore, deep learning methods have been

favored by more and more researchers. However, using
3D grid representations of molecules makes 3D CNNs
have a high computational cost, while the 1D represen-
tation method loses many important features. For
example, SMILES (Simplified Molecular Input Line
Entry System) [26] is a specification for describing the
structure of chemical species, transforming molecule
structures into unique 1D text sequences. Although
SMILES implicitly contains the structural information of
molecules, the correct structural information can only be
Current Opinion in Structural Biology 2022, 73:102327
extracted through specific methods. Using it as an input
representation of neural network may lose some struc-
ture features. The emerging GNNs are introduced to
structure-based DTI prediction workflow (Figure 2(a)).
The comparison of docking, 3D CNN, GCN and GAT in
predicting DTIs is shown in Table S3.

In structure-based GNN approaches, the input repre-

sentation can be roughly divided into three categories:
1D sequences that represent proteins and graphs that
represent molecules; protein pockets and molecules are
represented by graphs separately; graphs for structures of
protein pockets in complex with their molecular ligands
(Figure 2(b)). The input representations of the model
can be obtained by database query or RDKit conversion.
After that, the representations of proteins and com-
pounds are obtained through different neural network
layers respectively, and then concatenated together.
Finally, the output is obtained through training a neural

network with the DTI prediction task (Figure 2(a)).

Some structure-based approaches treat the DTI predic-
tion task as a regression task and output final results as
continuous values, i.e., drug target affinity DTA predic-
tion. In these tasks, model performance can be signifi-
cantly improved by introducing GNNs compared to only
usingCNNs.DeepDTAuses twoCNNbuilding blocks to
learn representations from SMILES of drugs and protein
sequences, respectively, and in conjunction with DNN to
predict drug-target affinity values. PADME [62] adds

GNNs to DeepDTA and suggests using fixed rule de-
scriptors to represent proteins, rather than learning the
underlying feature vectors of proteins directly. PADME is
the first method to use molecular graph convolution
(MGC) for DTIs. It extracts information from molecular
graph representation constructed by SMILES through
GraphConv model, and merges the generated latent
compound vectors and protein descriptors intoCombined
Input vector (CIV). Feedforward neural networks receive
CIVas the input, and then output a realevalue interaction
strength as the prediction of DTIs. However, PADME is
reported to have similar performance to DeepDTA.

GraphDTA [27] uses RDKit [63] to construct molecular
graphs and extract atomic features, and describes node
features through DeepChem [64], such as the atomic
symbol, the total number of hydrogen atoms, and the
implicit value of atoms. Unlike PADME, GraphDTA in-
vestigates several GNN models to extract the features of
molecular graphs. Finally, it is found that the performance
of themodel using graph-isomorphic network (GIN) [65]
in both the Davis dataset [66] and Kiba dataset [67] is
better than that of DeepDTA. DGraphDTA [68] con-
structs not only drug molecular maps, but also uses

PconsC4 [69] to construct contact maps based on protein
sequences. These two graphs are input into the twoGNN
building blocks to extract the representations, respec-
tively, and then concatenated for affinity prediction.
DGraphDTA not only greatly improves the accuracy of
www.sciencedirect.com
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Table 1

Databases used in papers in this survey.

Category Database Link Main content Model examples

Interaction databases DrugBank [30] https://go.drugbank.com/ Clinical level information andmolecular
level data about drugs

DeepCPI [31], GraphCPI [32], TriModel [33],

Matador [34] http://matador.embl.de/ Protein-chemical interactions DeepCPI [31], GraphCPI [32]
ChEMBL [35] https://www.ebi.ac.uk/chembl/ chemical, bioactivity and genomic data

of bioactive molecules
Wen Torng et al. [36]

PDBbind [37] http://www.pdbbind.org/(no longer
available)

Binding affinities for the protein−ligand
complexes

InteractionNet [38], Jaechang Lim et al. [39]

DrugCentral [40] https://drugcentral.org/ Active ingredients chemical entities,
pharmaceutical products, drug mode
of action, indications, pharmacologic
action

Wang et al. [41]

PubChem [42] https://pubchem.ncbi.nlm.nih.gov/ Chemical structures, identifiers,
chemical and physical properties,
biological activities, patents, health,
safety, toxicity data, and many
others

Wang et al. [41]

DGIdb [43] https://www.dgidb.org/ Drug-gene interaction Wang et al. [41]
DisGeNET [44] https://tdcommons.ai/ Human disease-associated genes and

variants
Wang et al. [41], SkipGNN [45]

HPRD [46] https://www.hsls.pitt.edu/obrc/index.
php?page=URL1055173331

Proteomic information pertaining to
human proteins

Hafez Eslami Manoochehri et al. [47], GANDTI [48]

CTD [49] http://ctdbase.org/ Associations between chemicals, gene
products, phenotypes, diseases,
and environmental exposures.

Wang et al. [41], Hafez Eslami Manoochehri et al. [47]

SIDER [50] http://sideeffects.embl.de/ Drugs and side effects Hafez Eslami Manoochehri et al. [47]
KEGG [51] https://www.genome.jp/kegg/pathway.

html
Genomic, chemical and systemic

functional information
TriModel [33]

BIOSNAP [52] http://snap.stanford.edu/biodata/ Associations between side effects,
chemical, gene, drug, target, and
disease

SkipGNN [45]

HuRI [53] http://www.interactome-atlas.org/ Protein–protein interaction SkipGNN [45]
Protein structure databases Uniprot [54] https://www.uniprot.org/uploadlists/ Protein sequence and functional

information
TriModel [33], GraphCPI [32]

PDB [55] https://www.rcsb.org/ 3D shapes of proteins, nucleic acids,
and complex assemblies

Wen Torng et al. [36]

Benchmark databases DUD-E [56] http://dude.docking.org/ Decoys Wen Torng et al. [36],
Jaechang Lim et al. [39]

MUV [57] https://www.tu-braunschweig.de/en/
pharmchem/forschung/baumann/
translate-to-english-muv

Maximum Unbiased Validation (MUV)
of virtual screening methods

Wen Torng et al. [36]

repoDB [58] http://apps.chiragjpgroup.org/repoDB/ True positives (approved drugs), and
true negatives (failed drugs) for drug
repositioning

Wang et al. [41]
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Figure 2

Structure-based predictions models. (a) The pipeline of structure-based model. Different models have similar skeletons; (b) Three common input types of
structure-based models. In the first, proteins are input as sequence formats and small molecules are constructed as graphs. The second is that protein
pockets and small molecules are constructed into different graphs; The third is that protein pockets and small molecules are converted into the same
graphs.

6 Artificial Intelligence (AI) Methodologies in Structural Biology
DTA prediction, but also creatively uses protein se-
quences to establish graphs, providing a robust protein
descriptor for drug design.

In addition to treating DTI prediction task as a regres-
sion task, some other studies modelled DTI prediction
as a classification task. DeepCPI [31] can obtain the

information of 3D structural interaction sites by repre-
sentation learning, which is extracted from 2D molec-
ular graphs and 1D protein sequence information. By
embedding compounds using r-radius subgraphs, it
overcomes the lack of learning parameters and ineffec-
tive representation learning due to the insufficient
types of atoms and bonds in the molecule. Then, GNNs
are used to obtain the low-dimensional representations
of the molecular graphs. For protein features extraction,
DeepCPI uses CNNs with a filter function. Finally, the
attention mechanism is implemented to simulate the

interaction and capture the interaction sites between a
compound and a protein, rather than simply summing
up their embeddings. It assigns a higher weight to a
subsequence in a protein if it is important to the com-
pound. GraphCPI [32] is another research that also
Current Opinion in Structural Biology 2022, 73:102327
learns the low-dimensional representations of protein
sequences and molecular graphs from CNN and GNN
building blocks, respectively. Compared with DeepCPI,
it obtains the topological information of the compound
from GNNs and uses Prot2vec to encode amino acid
sequences into D-dimensional vectors to facilitate pro-
tein representation learning. In addition, GraphCPI

allows the integration of any popular GNN model,
making it more flexible. Since embedding single amino
acid is usually meaningless, GraphCPI uses a fixed-
length N-gram splitting method to partition the se-
quences to represent the local chemical context of
protein sequences. Although its performance has only
moderately improved compared to DeepCPI, GraphCPI
is helpful for understanding the compoundeprotein
interaction in combination with the local chemical
context and topological structure.

All of these methods consider the entire protein
sequence, while others focus on local pockets. Wen Torng
and Russ B. Altman [36] developed a two-step graph
convolution framework topredictDTIs using 2Dcomplex
structures. In their model, features of the protein pocket
www.sciencedirect.com
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GNN for DTIs prediction Zhang et al. 7
graphs and 2D ligand graphswere extractedby twoGCNs,
respectively, and then input into fully connected layers to
predict DTIs. Remarkably, instead of using the actual
chemical bonds as edges, they considered residues less
than 7 Å away to be edge-attached, which adds more in-
formation about the relative positions of the actual 3D
structures. As a result, their model greatly improves the
accuracy of DTI prediction for DUD-E datasets. Inter-

actionNet [38] divides the compound and pocket graphs
into covalent and non-covalent. Covalent graphs are the
actual chemical structures of the compound and protein
pocket, while non-covalent maps regard all possible
protein-ligand interactions as edges. Compared with the
traditional strategybased oncovalentbondcomposition, it
provides a novel perspective.Through post-hoc layer-wise
relevance propagation (LRP) analysis, InteractionNet
successfully captures a series of important non-covalent
interactions between proteins and ligands in specific
complexes, including hydrogen bonds. JaechangLim et al.

[39] used GNN to integrate 3D structural information of
protein-ligand binding sites directly. They designed a
distanceeaware graph attention mechanism that enabled
the model to distinguish the contribution of each inter-
action to binding affinity, taking into account both atomic
distance and interaction.

Interaction network-based predictions
Interaction networks are ubiquitous in biological sys-

tems. In recent years, computational methods based on
interaction networks have been applied to solve various
biological problems [70]. Moreover, they have enabled
us to discover biologically significant but previously
Figure 3

The construction of interaction network and the comparison of interaction netw
source of the various edges in the interaction network. The left column is the da
graphs require only drug-target interaction edges, while heterogeneous graph

www.sciencedirect.com
unmapped DTIs. Most approaches are based on the
assumption of “guilt-by association”, that is, similar
drugs may have similar targets, and vice versa [71]. With
the development of public biomedical datasets on
proteineprotein interactions, adverse reactions, genome
mapping, etc., the advantages of computational methods
based on interaction networks have gradually emerged
[72]. In addition, some methods that need protein 3D

structures use sequences to predict uncharacterized
protein crystal structures, which may introduce new
biases. Therefore, DTI prediction based on interaction
networks is often adopted in the face of emerging dis-
eases, such as the in silico screening of anti-COVID-19
agents. In traditional network analysis, only direct
interaction is considered, but the local role (such as
neighbors, edge direction) and global position (such as
global topology or structure) of the node are ignored
[73]. GNNs sample and aggregate features from local
neighbors, which can preserve local role and global po-

sition information of nodes in the graph [14]. This
nature of GNNs benefits the integration of multimodal
and complex relationships in biomedical networks.

According to different structures of the interaction
network used in DTI prediction, its input can be catego-
rized into bipartite and heterogeneous graphs (Figure 3).
The bipartite graph consists of two disjoint and indepen-
dent sets of nodes [74], such as drugs and targets sets.The
edge is only connected between the two sets, i.e., the
neighbor of a drug can only be a drug target, and vice versa.

There is no edge such as drugedrug or targetetarget
inside these two parts. Hafez Eslami Manoochehri et al.
ork-based models. (a) Bipartite graph; (b) Heterogeneous graph; (c) The
tabase, and the right column is the kind of edges that can be built. Bipartite
s require more kinds of edges.

Current Opinion in Structural Biology 2022, 73:102327
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8 Artificial Intelligence (AI) Methodologies in Structural Biology
[75] used an improved Weisfeiler-Lehman Neural Ma-
chine (WLNM) to make link predictions for bipartite
graphs. Their approach is purely based on network topol-
ogy information to exclude the “guilt-by association” as-
sumptions. That is, they predicted links based on the
structure of the local network, rather than the similarity
within the set of drugs or targets. In the follow-up work,
Hafez Eslami Manoochehri et al. [76] added drugedrug
and proteineprotein similarities to the drug-target bipar-
tite graph to construct the semi-bipartite graphmodel, and
made linkage prediction by considering geometric dis-
tances in drug target nodes and drugedrug and proteine
protein similarities. In the Bifusion model established by
Wang et al. [41], diseaseedrug association informationwas
added. Compared with the information extracted and
fused from the PPI network alone, the performance is
improved to a certain extent, indicating that the addition
of some relevant information in the bipartite graph has an
auxiliary effect on the prediction of DTIs.

The heterogeneous graph integrates networks such as
drug side effects, drugedisease association data, gene
expression data, and protein function data, rather than
just drug-target interaction data, which provides diverse
information and multi-view perspectives for predicting
novel DTIs. The research of Luo et al. [71] showed that
the prediction performance of the model with multiple
heterogeneous information was better and more robust
than that of the simple bipartite graph. However, with
the increase in information types, the models suitable

for bipartite graphs are difficult to meet the needs of
heterogeneous graphs. Hafez Eslami Manoochehri et al.
[47] developed an encoder-decoder based GCNmethod
for DTI prediction by constructing a heterogeneous
graph consisting of drugs, proteins, diseases, and side
effects. Compared with the most advanced heteroge-
neous graph-based DTI prediction methods at that
time, such as NetLapRLS [77], HNM [78], and CMF
[79], the performance of this model has been signifi-
cantly improved, indicating that the principle of GCN
method is suitable for this type of task. TriModel [33]
proposed a knowledge-graph embedding approach that

predicts DTIs in a multi-stage process. Facts in the
knowledge-graph were modelled as (subject, predicate,
object) (SPO) triples, and the subject entity (drug) is
connected to the object entity (target protein) through
predicate relationships (drug-target). Tianyi Zhao et al.
[80] integrated the association between drug protein
pairs (DPPs) into DTI modelling, instead of building a
separate drug and protein network. They took DPPs as
the nodes of the network and the association between
DPPs as the edges of the network, and used GCN to
predict DTIs, which also achieved satisfactory results.

In addition to adopting different construction methods
for heterogeneous graphs, some other studies introduce
more advanced machine learning and GNN architec-
tures. SkipGNN [45] receives information from two-
hop neighbors as well as adjacent neighbors and
Current Opinion in Structural Biology 2022, 73:102327
predicts molecular interactions not only by aggregating
information from direct neighbors, but also from second-
order neighbors. Experiments showed that SkipGNN
can not only learn biologically significant embedding,
but also overcome the disadvantages of high noise and
poor integrity in some interaction networks. GANDTI
[48] introduced GAN to regularize the feature vectors of
nodes into Gaussian distribution, and built a LightGBM

classifier, exploiting unknown DTIs to offset the nega-
tive effects of class imbalance.

The emergence of SARS-CoV-2 triggered a global
pandemic, causing an urgent need to develop effective
treatments rapidly. Considering cost, safety, and devel-
opment speed, drug repurposing is a good way to rapidly
screen potential drugs. However, due to the lack of
structural data of proteins associated with emerging
infectious diseases, most current studies on DTI pre-
diction based on GNNs focus on the interaction

network, especially the heterogeneous network. Deisy
Morselli Gysi et al. [81] integrated multiple approaches,
including GCN, to obtain priority ranking of drug can-
didates. Drug repurposing knowledge map (DRKG)
[82] is a heterogeneous graph composed of genes,
compounds, diseases, biological processes, side effects,
and symptoms [73,83,84]. built GNN models and used
DRKG to rank drug candidates, among which [73] also
introduced electronic health records (EHRs) to validate
drug effectiveness from large-scale clinical data.

Discussion and outlook
Since GNN was proposed, it has been extensively
developed and explored for more than a decade [85],
and has been successfully applied in molecular bioin-
formatics and other fields in recent years. GNNs are
applicable to non-Euclidean data that can be graphically
represented, so they are of great significance in molec-
ular structures and interaction networks. GNNs can
capture the essential structural features of molecules

[13,86], which may be one of the reasons why they are
more accurate than other deep learning methods in
structure-based DTI prediction. Furthermore, com-
bined GCNs and the attention mechanism, SumGNN
[87] generates a short reasoning path to provide clues
for understanding drug interactions. However, there are
still challenges to fully exploring the potential of GNN
for DTI prediction (Figure 4).

At present, most GNN approaches for DTI prediction are
end-to-end models. Compared with a pipeline of separate

components involving feature calculation and feature se-
lection, the end-to-end model requires a large amount of
data to understand the complex relationship between the
input and the target. Although many large databases have
been available, they still cannot meet the needs well in
some aspects. First, since most existing databases only
contain positive samples, many supervised learning
methods simply treat all unlabelled drug-target pairs as
www.sciencedirect.com
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Challenges to fully explore the potential of GNNs for DTI prediction.
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negative samples, resulting in inaccurate predictions.
Developing semi-supervised learningmethods and adding

negative samples to databases can solve this problem
effectively. Second, the class imbalance between positive
andnegative data in the training set for theDTIprediction
task is also a challenge to deep learningmethods, including
GNN. In the real scene, thevastmajority of compounds are
negative samples of a given protein. Thus, random over-
sampling was frequently used to increase the proportion
of positive samples when training the DTI model, which
may affect the generalization performance of the model in
real-world prediction [88]. Third, the prediction perfor-
manceofmostmodels for experimental data is significantly

lower than that for the DUD-E test set [39]. Therefore,
the benchmark dataset may have a biased pattern for
classifying active and inactive molecules, which is easily
captured by neural networks. There is high demand for
building high-quality unbiased benchmark datasets that
consist of active and inactive molecules obtained from
experiments. Finally, there are a variety of experimental
assays and criteria for thedetermination of bioactivity data.
Besides, some active molecules miss quantitative activity
data to make quantitative comparisons. As the heteroge-
neous biological data obtained by different experimental

procedures and instruments are noisy and fuzzy [89], it is
www.sciencedirect.com
highly demanding to provide guidelines to find, access,
interoperate and reuse DTI data.

The function of macromolecules, especially proteins, is
greatly affected by their 3D folding structures. Obvi-
ously, the prediction method based on 3D structures
provides more direct characterizations of physical in-
teractions between a drug and its protein target. How-
ever, the current GNNs mostly operate on flat 2D
graphs, ignoring the structural information in 3D space.
Recently, some researchers have used 3D protein
pockets as input [39], confirming the validity of the
GNNs method for 3D molecular structure problems.

Such an approach of using local pockets as inputs points
the way to structure-based DTI prediction in the future.
It captures the 3D structure features of the local reac-
tion pocket rather than the entire protein to reduce the
calculation cost. In addition, the structure-based DTI
prediction method also has a problem that cannot be
ignored, that is, there are still many proteins without
structural information. Using homology modelling and
some protein structure prediction softwares to obtain
the 3D structures of proteins may introduce more bias
[68]. Recently, AlphaFold2 [90] has made a break-

through in protein structure prediction, and structural
Current Opinion in Structural Biology 2022, 73:102327
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biologists are constantly learning more about the struc-
ture of proteins. It is believed that the 3D structure of
proteins will be easier to obtain in the future, and
structure-based DTI prediction methods will also be
more accurate than before.

The interaction networks can be divided into bipartite
and heterogeneous graphs. The advantage of bipartite

graphs is that modelling is simple. As the neighbor nodes
of drugs can only be targets, there is no need to integrate
multiple-interaction information. However, its disad-
vantages cannot be ignored. Since many drug targets
have not been identified completely, the performance of
topological structure-based bipartite graphs is limited
because of the missing link. Some studies added other
relevant information into the bipartite graph to form a
semi-bipartite graph to fill the vacant value to a certain
extent. Heterogeneous graphs integrate more informa-
tion than semi-bipartite graphs. The heterogeneous

information is used for DTI prediction, which takes into
account the role of entities in different networks, and is
more in line with biological and chemical significance.
However, there are also some problems that need to be
solved. On the one hand, heterogeneous graphs put
forward higher requirements for modelling theory. With
the continuous improvement and perfection of GNNs
theory, researchers are increasingly inclined to use het-
erogeneous graphs to make DTI predictions. Some
studies [33,45] have introduced skip connection and
knowledge graph to predict DTIs and achieved good

results. On the other hand, the network structure needs
to be optimized to integrate information from multiple
sources, such as electronic medical records. Knowledge
graphs can use such information more effectively.
Traditional knowledge graphs need to be populated by
experts via manual curation, requiring considerable time
and effort [91,92]. Current studies aim to build knowl-
edge graphs based on such data through automated
processes [93], but there is still room for improvement.
Figuring out how to use interaction network information
more effectively is both a challenge and an opportunity.
Because the structural and pathological mechanisms of

related proteins are not fully understood, many drug
repurposing studies for COVID-19 are based on inter-
action network [73,81,83], demonstrating the necessity
of developing prediction methods based on interac-
tion networks.

At present, there is still a lack of DTI prediction
methods based on mixed strategies. Perhaps combining
structure with interaction network can take into account
both chemical action and biological network location,
and more comprehensive information can contribute to

better prediction. In addition, “black box” deep neural
networks are often criticized for their lack of inter-
pretability, which is necessary in the field of biomedi-
cine. Interpretable models not only enable prediction of
DTIs, but also help us understand the underlying
Current Opinion in Structural Biology 2022, 73:102327
mechanisms better and facilitate the discovery of new
active compounds and new targets.

Conclusions
Over the past few years, GNNs have become a powerful

and useful tool for DTI prediction tasks. This progress is
attributed to the applicability of GNNs to non-
Euclidean data and the explosive growth of GNNs
theoretical research in recent years. In this review, we
provide a comprehensive review of the recent applica-
tions of GNNs in the field of DTI prediction. According
to the difference of input, we categorize the DTI pre-
diction tasks into structure-based and interaction
network-based and introduce several representative
research of them. In addition, we summarize the data-
bases involved in the relevant papers and classify them
according to different content. Finally, we propose the

current problems that need to be solved in GNN ap-
proaches for DTI prediction task, and make a pre-
liminary discussion on the future research direction of
some problems. It is foreseeable that GNNs will be used
widely in the field of drug research in the future, which
could significantly shorten the cycle of drug research
and development.
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